Can I Use TensorBoard With Google Colab?
Answer :
EDIT: You probably want to give the official %tensorboard
magic a go, available from TensorFlow 1.13 onward.
Prior to the existence of the %tensorboard
magic, the standard way to achieve this was to proxy network traffic to the Colab VM using ngrok. A Colab example can be found here.
These are the steps (the code snippets represent cells of type "code" in colab):
Get TensorBoard running in the background.
Inspired by this answer.LOG_DIR = '/tmp/log' get_ipython().system_raw( 'tensorboard --logdir {} --host 0.0.0.0 --port 6006 &' .format(LOG_DIR) )
Download and unzip ngrok.
Replace the link passed towget
with the correct download link for your OS.! wget https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-amd64.zip ! unzip ngrok-stable-linux-amd64.zip
Launch ngrok background process...
get_ipython().system_raw('./ngrok http 6006 &')
...and retrieve public url. Source
! curl -s http://localhost:4040/api/tunnels | python3 -c \ "import sys, json; print(json.load(sys.stdin)['tunnels'][0]['public_url'])"
Many of the answers here are now obsolete. So will be mine I'm sure in a few weeks. But at the time of this writing all I had to do is run these lines of code from colab. And tensorboard opened up just fine.
%load_ext tensorboard %tensorboard --logdir logs
Here's an easier way to do the same ngrok tunneling method on Google Colab.
!pip install tensorboardcolab
then,
from tensorboardcolab import TensorBoardColab, TensorBoardColabCallback tbc=TensorBoardColab()
Assuming you are using Keras:
model.fit(......,callbacks=[TensorBoardColabCallback(tbc)])
You can read the original post here.
Comments
Post a Comment