Convert A Pandas DataFrame To A Dictionary


Answer :

The to_dict() method sets the column names as dictionary keys so you'll need to reshape your DataFrame slightly. Setting the 'ID' column as the index and then transposing the DataFrame is one way to achieve this.



to_dict() also accepts an 'orient' argument which you'll need in order to output a list of values for each column. Otherwise, a dictionary of the form {index: value} will be returned for each column.



These steps can be done with the following line:



>>> df.set_index('ID').T.to_dict('list')
{'p': [1, 3, 2], 'q': [4, 3, 2], 'r': [4, 0, 9]}





In case a different dictionary format is needed, here are examples of the possible orient arguments. Consider the following simple DataFrame:



>>> df = pd.DataFrame({'a': ['red', 'yellow', 'blue'], 'b': [0.5, 0.25, 0.125]})
>>> df
a b
0 red 0.500
1 yellow 0.250
2 blue 0.125


Then the options are as follows.



dict - the default: column names are keys, values are dictionaries of index:data pairs



>>> df.to_dict('dict')
{'a': {0: 'red', 1: 'yellow', 2: 'blue'},
'b': {0: 0.5, 1: 0.25, 2: 0.125}}


list - keys are column names, values are lists of column data



>>> df.to_dict('list')
{'a': ['red', 'yellow', 'blue'],
'b': [0.5, 0.25, 0.125]}


series - like 'list', but values are Series



>>> df.to_dict('series')
{'a': 0 red
1 yellow
2 blue
Name: a, dtype: object,

'b': 0 0.500
1 0.250
2 0.125
Name: b, dtype: float64}


split - splits columns/data/index as keys with values being column names, data values by row and index labels respectively



>>> df.to_dict('split')
{'columns': ['a', 'b'],
'data': [['red', 0.5], ['yellow', 0.25], ['blue', 0.125]],
'index': [0, 1, 2]}


records - each row becomes a dictionary where key is column name and value is the data in the cell



>>> df.to_dict('records')
[{'a': 'red', 'b': 0.5},
{'a': 'yellow', 'b': 0.25},
{'a': 'blue', 'b': 0.125}]


index - like 'records', but a dictionary of dictionaries with keys as index labels (rather than a list)



>>> df.to_dict('index')
{0: {'a': 'red', 'b': 0.5},
1: {'a': 'yellow', 'b': 0.25},
2: {'a': 'blue', 'b': 0.125}}


Should a dictionary like:


{'red': '0.500', 'yellow': '0.250, 'blue': '0.125'}

be required out of a dataframe like:


        a      b
0 red 0.500
1 yellow 0.250
2 blue 0.125

simplest way would be to do:


dict(df.values)

working snippet below:


import pandas as pd
df = pd.DataFrame({'a': ['red', 'yellow', 'blue'], 'b': [0.5, 0.25, 0.125]})
dict(df.values)


Try to use Zip



df = pd.read_csv("file")
d= dict([(i,[a,b,c ]) for i, a,b,c in zip(df.ID, df.A,df.B,df.C)])
print d


Output:



{'p': [1, 3, 2], 'q': [4, 3, 2], 'r': [4, 0, 9]}


Comments

Popular posts from this blog

Converting A String To Int In Groovy

"Cannot Create Cache Directory /home//.composer/cache/repo/https---packagist.org/, Or Directory Is Not Writable. Proceeding Without Cache"

Android SDK Location Should Not Contain Whitespace, As This Cause Problems With NDK Tools